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Abstract

The starting point of modern theoretical cosmology were the
Einstein equations with the cosmological constant Λ which was
introduced by Einstein. The Einstein equations with the cosmo-
logical matrix Λαβ is introduced here.

1 Introduction

The cosmological constant Λ is interpreted at this time as the value of
the energy density of the vacuum of space. It was originally introduced
by Einstein as an addition to his theory of general relativity to achieve a
static universe, which was the accepted view at the time (Einstein, 1917).

Einstein abandoned the concept after Hubble’s discovery that all galax-
ies outside the Local Group (the Milky Way Galaxy) are moving away from
each other, forming expanding universe (Hubble, 1929).

Most cosmology researchers assumed the cosmological constant to be
zero. The cosmological constant is now considered as the simplest possible
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form of dark energy since it is constant in both space and time, and this
leads to the current standard model of cosmology known as the Λ−model,
which is good fit to many cosmological observations.

The cosmological constant has the same effect as an intrinsic energy
density of the vacuum, ϱvac. In this context, it is commonly moved onto the
right-hand side of the Einstein equation, and defined with a proportionality
factor, or Λ ∼ ϱvac. The true dimension of Λ is a length−2. At present time
Λ = 1.11× 10−52 ×m−2.

The goal of this article is to introduce the o called cosmological matrix
which is more adequate to describe many aspects of universe when intsert-
ing into the Einstein equations. So, let us remember the derivation of the
Einstein equations.

2 Fok derivation of Einstein equations

The Einstein field equations (EFE) are the space-time geometry equations
for the determine of the metric tensor of space-time for a given arrange-
ment of stress-energy in the spacetime. They are the non-linear partial
differential equations and the solutions of the EFE are the components of
the metric tensor.

The inertial trajectories of particles are geodesics in the resulting
geometry calculated using the geodesic equation.

EFE obeying local energy-momentum conservation, they reduce to
Newtons law of gravitation where the gravitational field is weak and
velocities are much less than the speed of light.

Let us follow the rigorous derivation of the Einstein gravity equations by
Fok (Fok, 1961). The similar derivation was performed by Chandrasekhar
(1972), Kenyon (1996), Landau et al. (1962), Rindler (2003) and others.
Source theory derivation of Einstein equations was performed by Schwinger
(1970).

It is well known that the gravity mass MG of some body is equal to the
its intertial mass MI , where gravity mass is a measure of a massive body to
create the gravity field (or, gravity force) and the inertial mass of a massive
body is a measure of the ability of the resistence of the body when it is
accelerated. At present time we know, that if components of elementary
particles have the same gravity and inertial masses, the body composed
with such elementary particles has the identical gravity and inertial mass.
There is no need to perform experimental verification. So, particle physics
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brilliantly confirms the identity of the inertial and gravity masses.
According to the Newton theory the gravity potential is given by the

equation

U(r) = −κ
M

r
, (1)

where r is a distance from the center of mass of a body, κ is the gravitational
constant.

The potential U is as it is well known the solution of the Poisson
equation:

∆U(r) = −4πκϱ, (2)

where ϱ is the density of the distributed masses.
The problem is what is the geometrical formulation of gravity equation

(2) following from the space-time element ds, which has the specific form
in case of the special theory of relativity.

Let us postulate that the motion of a body moving in the g-field is
determined by the variational principle

δ
∫
ds = δ

∫
gαβdx

αdxβ = 0. (3)

In order to get the Newton equation of motion, we are forced to perform
the following identity:

g00 = c2 − 2U = −4πκϱ, (4)

The second mathematical requirement, which has also the physical
meaning is the covariance of the derived equation. It means that the
necessary mathematical operation are the following replacing of original
symbols:

U → gµν (5)

with
∆U → Tensor equation (6)

ϱ → Tµν, (7)

where Tµν is the tensor of energy and momentum.
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In order to get the tensor generalization of eq. (2) it is necessary
to construct new tensor Rµν, which is linear combination of the more
complicated tensor Rαβ,µν, or

Rµν = gαβRµα,βν (8)

and the scalar quantity R, which is defined by equation

R = gλµRλµ (9)

and construct the combination tensor Gλµ of the form

Gµν = Rµν −
1

2
gµνR, (10)

which has the mathematical property, that the divergence of this tensor is
zero, or,

∂λGλµ = 0 (11).

With regard to the fact that also the energy-momentum tensor Tµν has
the zero divergence, we can identify eq. (10) with the tensor Tµν, or

Rµν −
1

2
gµνR = −8πκ

c2
Tµν, (12)

where the appeared constant in the last equation is introduce to get the
classical limit of the equation.

The approximative solution of the last equation is as follows

ds2 = (c2 − 2U)dt2 −
(
1 +

2U

c2
(dx2 + dy2 + dz2)

)
(13).

The space-time element is able to explaine the shift of the frequency
of light in gravitational field and the deflection of light in the gravitaional
field of masiive body with mass M .

So, we have seen that the basic mathematical form of the Einstein gen-
eral relativity is the Riemann manifold specified by the metric with the
physical meaning. The crucial principle is the equality of the inertial and
gravitational masses. The principle of equivalence is not the crucial prin-
ciple of general relativity and it means that the easy logical consequence
of this fact is that the Copernicus system is not equivalent to the Ptolemy
system.
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3 From cosmological constant to cosmological matrix

Let us write the Einstein equations (12) in the following form

Rµν −
1

2
gµνR + Λgµν = −8πκ

c2
Tλµ, (14)

where Λ is the new cosmological constant is introduced ad libitum, which
enables to find new form of the cosmological model and their solutions in
the mathematical form.

The introduction of the comological matrix is as follows is based on the
the analogy with the term (9)

Rgµν = (Rαβg
αβ)gµν (15)

Now, if we perform transformation

Rαβ → Λαβ, (16)

then we get

Rgµν → Λαβg
αβgµν (17)

We suppose here some mathematical freedom in postulating the cosmo-
logical matrix to get the Einstein equations with the cosmological matrix
Λαβ in the form:

Rµν −
1

2
gµνR + (Λαβg

αβ)gµν = −8πκ

c2
Tµν, (18)

where

Λαβ =


Λ00 Λ01 Λ02 Λ03

Λ10 Λ11 Λ12 Λ13

Λ20 Λ21 Λ22 Λ23

Λ30 Λ31 Λ32 Λ33

 . (19)

The generalization of cosmology and new deal of cosmology is then based
on the gravity equations (18).
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4 From Schwarzschild space to the space with cos-

mological matrix

It is well known that the Schwarzschild solution of the Einstein equation
is of the spherical form (Rindler, 2003):

ds2 =

(
1− 2m

r

)
dt2 −

(
1− 2m

r

)−1

dr2 − r2(dθ2 + sin2 θdφ2), (20)

where m, r, θ is mass of a gravitating body, radius, sperical angle and the
azimutal angle.

In case if the Einstein equations with the cosmological constant Λ, we
get the so called modified Schwarzschild space-time with the corresponding
solution as it follows (Rindler, 2003):

ds2 =

(
1− 2m

r
− 1

3
Λr2

)
dt2 −

(
1− 2m

r
− 1

3
Λr2

)
dr2 − r2(dθ2 + sin2 θdφ2), (21)

representing Schwarzschild-de Sitter space because for small r it approxi-
mates Schwarzschild space-time and for large r de Sitter space-time if Λ is
positive.

The solution of the Einstein equations with the cosmological matrix
(13) can be obtained by the usual mathematical methods of the relativistic
physics.

5 Discussion

Einstein included the cosmological constant (”biggest blunder” of his
life) as a term in his field equations for general relativity because he
was dissatisfied that his equations did not allow, apparently, for a static
universe. Einstein predicted the expansion of the universe in theory, before
it was demonstrated in observation of the cosmological red shift.

However, soon after Einstein developed his static theory, observations by
Edwin Hubble indicated that the universe appears to be expanding which
this was consistent with a original solution that had been found by the
mathematician Friedmann, working on the Einstein equations of general
relativity.
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So, adding the cosmological constant to Einstein’s equations does not
lead to a static universe at equilibrium because the equilibrium is unstable.

However, the cosmological constant remained a subject of theoretical
and empirical interest. The cosmological data in the past decades strongly
suggests that our universe has a positive cosmological constant. The
explanation of this small but positive value is an brilliant theoretical goal.

We present here the generalization of Einstein’s gravitational theory, by
the cosmological matrix and it is not excluded that we define here the new
deal of mathematical physics of differential equations and the new deal of
cosmology.
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